
1

BEE 271 Digital circuits and systems
Spring 2017
Lab 4: Keypad debounce*

1 Objectives

In this lab, you will modify the keypad
scanner you built in lab 3 to add
debounce logic and modify the display
to scroll the characters typed.

1. When a key is pressed, the new
digit should be added to the right
end of the display and the
previous digits shifted left.

2. Debounce logic should be included
ensure that if you press a key only
once, you get only one digit.

3. One of the pushbutton switches
should provide a reset function,
blanking all the digits.

By the end of the lab, you should be
comfortable designing, building and
debugging a useful clocked sequential
circuit in Verilog and you will have
learned how a classic problem of
working with mechanical switches is
solved.

2 Work product

At the end of this lab, you must demo your design and submit your code as a .v or .vs file.
That is all you need to submit. You will not be writing reports.

3 Switch debounce

When a mechanical switch is closed, the contacts will bounce like a ball for perhaps a
millisecond or so, rapidly opening and closing. This happens much too fast for any human
to notice, but to digital logic, it looks like the key is being pressed multiple times.

* This lab was written by Nicole Hamilton.

Figure 1. Keypad scanner.

Figure 2. Keypad with pull-up resistors. The columns
are the inputs and the rows are the outputs.

Row0

Row1

Row2

Row3

Col0 Col1 Col2 Col3
25KΩ
pullups

3.3V

2

Without additional logic to debounce the signal, pressing
a key once can generate not just one character, it can
generate a whole slew of them racing across the display.

The standard solution is a circuit that exhibits hysteresis,
meaning that its behavior is sticky. As illustrated
conceptually in figure 3, once it in a given state, it’s hard
to get it out.

Hysteresis can be accomplished by integrating the input
over time either digitally or with an analog circuit (e.g.,
with a device called a Schmitt trigger), switching the
output state only after the integral has crossed an
appropriate threshold.

This is a class about digital design so course we will do it digitally.

4 Procedure

In this lab, you’ll add logic to your keypad scanner to debounce the output to ensure that if
you press a key once, you get exactly one key depression.

Here are the design steps you’ll follow.

1. Create a new module to debounce the output of your scan module.

2. Add additional logic to shift each a new keystroke into the rightmost 7-segment display.

3. Debug your final design, demo and submit your .v or .vs file.

4.1 Stage 2: Debounce each key

Create a module with the following inputs and outputs to debounce the raw output of your
scanner. When the input changes, it should wait for it settle before changing its output.

module Debounce(input CLOCK_50, input [3:0] rawKey, input rawValid,
 output reg [3:0] debouncedKey, output reg debouncedValid);

The way to decide if the input has settled is to use a counter to count down until enough
time has elapsed and the signal has been steady enough that you trust it. You will also
need some reg variables to remember the last state of the raw input.

How long you wait for settling is not very critical. Any reasonable value from about 1 ms =
5,000 clocks to about 10 ms = 50,000 clocks seemed to work fine for me. The shorter the
settle time, the more responsive the keyboard but anything in the few millisecond range is
fast enough to seem instantaneous to humans.

Create an always block entered on the positive edge of the clock.

1. Each time the input isn’t valid, increment the counter.

Figure 3. Hysteresis.

1

1

Input

Output

3

2. Each time you see the same valid raw key as last time, decrement the counter.

3. If you see a different valid key, reset the counter to the maximum, representing the
desired settle time, and set the debounced output as invalid.

4. If the counter hits 0, it means the key has settled. Stop decrementing, set the
debounced output to the new value and indicate that it’s valid.

5. If the counter hits the maximum, set the debounced output as invalid (meaning no key
is being pressed) and stop incrementing.

6. Verify that it you connect the output to a 7-segment display, you get what you expect.

4.2 Display the result

In your main routine, connect it all together.

1. Create an array of six 4-bit reg variables to hold the six hex digits you can display.
Create a 6-bit reg variable to indicate whether there’s anything in each digit and wire
this up to your 7-segment decoders.

2. Instantiate a copy of your Scan module and wire it to the keypad. Instantiate a copy of
your Debounce module and wire it to the output of Scan.

3. Create an always block that’s entered on the positive edge of the clock.

4. Each time debouncedValid goes to 1 means you have a new keystroke. Shift all the
current digits left and insert the new one on the right.

5. Add a reset function to your always block, with reset tied to the leftmost button on the
DE1-SoC board.

6. Demo your design and turn in your code.

	1 Objectives
	2 Work product
	3 Switch debounce
	4 Procedure
	4.1 Stage 2: Debounce each key
	4.2 Display the result

